Introduction to Score based Generative modelling

Gabriel V. Cardoso

Hi! Paris reading group, 27/02/2024

Overview

1 Background

- 2 Implicit Score Matching
- 3 Denoising score matching
- 4 Noise Conditional Score Networks
- **5** Denoising diffusion implicit models (DDIM)
- 6 Deep image prior

7 Conclusion

Background

Generative Models

- **Task**: generate new samples from a distribution of interest q_d defined over ℝ^d.
- **Context**: We rely only on a dataset \mathcal{D} of i.i.d samples from q_d .
- Examples: Generative Adversarial Networks (GANs)¹, Normalizing Flows² and Score-based generative models³.

¹Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. *Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2*, 2672–2680.

²Rezende, D., & Mohamed, S. (2015, July). Variational inference with normalizing flows. In F. Bach & D. Blei (Eds.), *Proceedings of the 32nd international conference on machine learning* (pp. 1530–1538, Vol. 37). PMLR. https://proceedings.mlr.press/v37/rezende15.html

³Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, *32*.

• Let $\mathcal{B}(\mathbb{R}^d)$ be the set of Borelian subsets of \mathbb{R}^d .

- Let $\mathcal{B}(\mathbb{R}^d)$ be the set of Borelian subsets of \mathbb{R}^d .
- Let $d \in \mathbb{N}_*$ and $\mathsf{P}_0(\mathbb{R}^d)$ denote the set of (Borelian) probability measures in \mathbb{R}^d .

• Let $\mathcal{B}(\mathbb{R}^d)$ be the set of Borelian subsets of \mathbb{R}^d .

Let $d \in \mathbb{N}_*$ and $\mathsf{P}_0(\mathbb{R}^d)$ denote the set of (Borelian) probability measures in \mathbb{R}^d .

$$\bullet \mathsf{P}_2(\mathbb{R}^d) := \{ p \in \mathsf{P}_0(\mathbb{R}^d) | \mathbb{E}_{X \sim p} \left[X^2 \right] < \infty \}.$$

• Let $\mathcal{B}(\mathbb{R}^d)$ be the set of Borelian subsets of \mathbb{R}^d .

Let $d \in \mathbb{N}_*$ and $\mathsf{P}_0(\mathbb{R}^d)$ denote the set of (Borelian) probability measures in \mathbb{R}^d .

For $q_d \in P_0(\mathbb{R}^d)$ that admits a density w.r.t the Lebesgue measure, we define the *score* of q_d as

$$\mathbf{s}(x) := \nabla \log \mathbf{q}_{\mathrm{d}}(x)$$
.

Unadjusted Langevin Algorithm (ULA)

ULA

 $X_0 \sim \mu_0, \text{ for } t \in \mathbb{N}_*$ $X_t := X_{t-1} + \gamma \nabla \log \mathsf{q}_d(X_{t-1}) + (2\gamma)^{1/2} \epsilon_t , \qquad (1)$ where $\epsilon_t \sim \mathcal{N}(0, \mathbf{I}_d)$ and $\gamma > 0$.

ULA guarantees

Wasserstein 2

For $(p_1, p_2) \in \mathsf{P}_2(\mathbb{R}^d)^{\otimes 2}$ we define $\mathcal{C}(p_1, p_2) := \{ \pi \in \mathsf{P}_0(\mathbb{R}^{2d}) | \pi(A \times \mathbb{R}^d) = p_1(A); \pi(\mathbb{R}^d \times B) = p_2(B)$ for $(A, B) \in \mathcal{B}(\mathbb{R}^d)^{\otimes 2} \}$.

We define the *Wasserstein* 2 distance between p_1 and p_2 as

$$W_2^2(p_1, p_2) := \min_{\pi \in \mathcal{C}(p_1, p_2)} \int ||x - y||^2 \pi(x, y) \mathrm{d}x \mathrm{d}y$$

ULA guarantees

ULA guarantees from Durmus et al., 2019, Corollary 10⁴

Assume the score is *m*-concave, *L* Lipschitz and $\epsilon > 0$. Let $\mu_t := \text{Law}(X_t)$. If $\mathbf{P}_{\epsilon} < \min \{ m \epsilon / (4Ld), L^{-1} \}$ and $t_{\epsilon} > \log(2W_2^2(\mu_0, \mathbf{q}_d) / \epsilon) \gamma_{\epsilon}^{-1} m^{-1}$ then $W_2^2(\mu_{t_*}, \mathbf{q}_d) < \epsilon$.

⁴Durmus, A., Majewski, S., & Miasojedow, B. (2019). Analysis of langevin monte carlo via convex optimization. *Journal of Machine Learning Research*, 20(73), 1–46. http://jmlr.org/papers/v20/18-173.html Corollary 10.

Implicit Score Matching

Score Matching

Goal: Learn the score of q_d with a Neural Network s_{θ} , where $\theta \in \Theta \subset \mathbb{R}^p$.

Score Matching

Goal: Learn the score of q_d with a Neural Network s_{θ} , where $\theta \in \Theta \subset \mathbb{R}^p$.

Score Matching

$$\operatorname{argmin}_{\theta} \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}_{\theta}(X) - \mathsf{s}(X) \|^{2} \right].$$
(2)

Learning the score from data

Hyvärinen, 2005⁵ shows if $\lim_{\|x\|\to\infty} s_{\theta}(x)q_{d}(x) = 0$, then the score matching objective (2) is equivalent to

Implicit score matching loss

$$\operatorname{argmin}_{\theta} \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\nabla \cdot \mathsf{s}_{\theta}(X) + 1/2 \| \mathsf{s}_{\theta}(X) \|^{2} \right].$$
(3)

⁵Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(24), 695–709. http://jmlr.org/papers/v6/hyvarinen05a.html

$$\mathbb{E}_{X \sim \mathbf{q}_{\mathrm{d}}} \left[\| \mathbf{s}(X) - \mathbf{s}_{\theta}(X) \|^{2} \right] = \mathbb{E}_{X \sim \mathbf{q}_{\mathrm{d}}} \left[\| \mathbf{s}(X) \|^{2} \right] - 2\mathbb{E}_{X \sim \mathbf{q}_{\mathrm{d}}} \left[\mathbf{s}(X)^{T} \mathbf{s}_{\theta}(X) \right] + \mathbb{E}_{X \sim \mathbf{q}_{\mathrm{d}}} \left[\| \mathbf{s}_{\theta}(X) \|^{2} \right].$$

$$\mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) - \mathsf{s}_{\theta}(X) \|^{2} \right] = \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) \|^{2} \right] - 2 \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\mathsf{s}(X)^{T} \mathsf{s}_{\theta}(X) \right] + \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}_{\theta}(X) \|^{2} \right].$$

Note that

$$\mathbf{s}(x)^T \mathbf{s}_{\theta}(x) = \sum_{i=1}^d \mathbf{s}_{\theta,i}(x) \partial_{x_i} \log \mathbf{q}_{\mathrm{d}}(x) \,.$$

$$\mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) - \mathsf{s}_{\theta}(X) \|^{2} \right] = \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) \|^{2} \right] - 2 \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\mathsf{s}(X)^{T} \mathsf{s}_{\theta}(X) \right] + \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}_{\theta}(X) \|^{2} \right].$$

Note that

$$\mathbf{s}(x)^T \mathbf{s}_{\theta}(x) = \sum_{i=1}^d \mathbf{s}_{\theta,i}(x) \partial_{x_i} \log \mathbf{q}_{\mathrm{d}}(x) \,.$$

For $i \in \llbracket 1, d \rrbracket$,

$$\mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}}\left[\mathsf{s}_{\theta,i}(X)\partial_{x_{i}}\log\mathsf{q}_{\mathrm{d}}(X)\right] = \int \mathsf{s}_{\theta,i}(x)\partial_{x_{i}}\log\mathsf{q}_{\mathrm{d}}(x)\mathsf{q}_{\mathrm{d}}(x)\mathrm{d}x.$$

$$\mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) - \mathsf{s}_{\theta}(X) \|^{2} \right] = \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}(X) \|^{2} \right] - 2 \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\mathsf{s}(X)^{T} \mathsf{s}_{\theta}(X) \right] + \mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}} \left[\| \mathsf{s}_{\theta}(X) \|^{2} \right].$$

Note that

$$\mathbf{s}(x)^T \mathbf{s}_{\theta}(x) = \sum_{i=1}^d \mathbf{s}_{\theta,i}(x) \partial_{x_i} \log \mathbf{q}_{\mathrm{d}}(x) \,.$$

For $i \in \llbracket 1, d \rrbracket$,

$$\mathbb{E}_{X \sim \mathsf{q}_{\mathrm{d}}}\left[\mathsf{s}_{\theta,i}(X)\partial_{x_{i}}\log\mathsf{q}_{\mathrm{d}}(X)\right] = \int \mathsf{s}_{\theta,i}(x)\partial_{x_{i}}\log\mathsf{q}_{\mathrm{d}}(x)\mathsf{q}_{\mathrm{d}}(x)\mathsf{d}x.$$

Since $\partial_{x_i} \log q_d(x) q_d(x) = \partial_{x_i} q_d(x)$, we have

$$\int \mathsf{s}_{\theta,i}(x)\partial_{x_i}\log \mathsf{q}_{\mathrm{d}}(x)\mathsf{q}_{\mathrm{d}}(x)\mathrm{d}x = -\int \partial_{x_i}\mathsf{s}_{\theta,i}(x)\mathsf{q}_{\mathrm{d}}(x)\mathrm{d}x.$$

- $\nabla \cdot s_{\theta}$ costly in high dimensions.
- Score estimate inaccurate in low data regions, furthermore ULA moves can be stuck in each mode.

Figure: Illustration of score on low data regions, from Y. Song and Ermon, 2019⁶.

⁶Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, *32*.

Code Break! https: //github.com/gabrielvc/tutorial_ddim

Vincent, 2011⁷ introduces the idea of learning the score of $q_{\sigma}(dx_{\sigma}) = \int q_{\sigma}(x_{\sigma}|x)q_{d}(dx)$ where $q_{\sigma}(\cdot|x) = \mathcal{N}(x, \sigma^{2} I)$.

⁷Vincent, P. (2011). A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7), 1661–1674. https://doi.org/10.1162/NECO_a_00142

Vincent, 2011⁷ introduces the idea of learning the score of $q_{\sigma}(dx_{\sigma}) = \int q_{\sigma}(x_{\sigma}|x)q_{d}(dx)$ where $q_{\sigma}(\cdot|x) = \mathcal{N}(x, \sigma^{2} I)$.

Denoising score matching loss

$$\operatorname{argmin}_{\theta} \mathbb{E}_{X_{\sigma} \sim q_{\sigma}(\cdot|X), X \sim \mathbf{q}_{d}} \left[\|\mathbf{s}_{\theta, \sigma}(X_{\sigma}) - \nabla \log q_{\sigma}(X_{\sigma}|X)\|^{2} \right]$$

⁷Vincent, P. (2011). A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7), 1661–1674. https://doi.org/10.1162/NECO_a_00142

Let $q_{0|\sigma}(\mathrm{d}x_0|x_\sigma) := q_{\sigma|0}(x_\sigma|x_0)\mathsf{q}_\mathrm{d}(\mathrm{d}x_0)/\mathsf{q}_\sigma(x_\sigma).$

Let $q_{0|\sigma}(dx_0|x_\sigma):=q_{\sigma|0}(x_\sigma|x_0)q_d(dx_0)/q_\sigma(x_\sigma)$. By Fisher's identity

$$\nabla \log \mathbf{q}_{\sigma}(x_{\sigma}) = \frac{\nabla \mathbf{q}_{\sigma}(x_{\sigma})}{\mathbf{q}_{\sigma}(x_{\sigma})} = \mathbb{E}_{X_{0} \sim \mathbf{q}_{d}} \left[\frac{\nabla q_{\sigma|0}(x_{\sigma}|X_{0})}{\mathbf{q}_{\sigma}(x_{\sigma})} \right]$$
$$= \mathbb{E}_{X_{0} \sim \mathbf{q}_{d}} \left[\nabla \log q_{\sigma|0}(x_{\sigma}|X_{0}) \frac{q_{\sigma|0}(x_{\sigma}|X_{0})}{\mathbf{q}_{\sigma}(x_{\sigma})} \right]$$
$$= \mathbb{E}_{X_{0} \sim q_{0|\sigma}(\cdot|x_{\sigma})} \left[\nabla \log q_{\sigma|0}(x_{\sigma}|X_{0}) \right].$$

Let $q_{0|\sigma}(dx_0|x_\sigma):=q_{\sigma|0}(x_\sigma|x_0)q_d(dx_0)/q_\sigma(x_\sigma)$. By Fisher's identity

$$\nabla \log \mathbf{q}_{\sigma}(x_{\sigma}) = \frac{\nabla \mathbf{q}_{\sigma}(x_{\sigma})}{\mathbf{q}_{\sigma}(x_{\sigma})} = \mathbb{E}_{X_{0} \sim \mathbf{q}_{d}} \left[\frac{\nabla q_{\sigma|0}(x_{\sigma}|X_{0})}{\mathbf{q}_{\sigma}(x_{\sigma})} \right]$$
$$= \mathbb{E}_{X_{0} \sim \mathbf{q}_{d}} \left[\nabla \log q_{\sigma|0}(x_{\sigma}|X_{0}) \frac{q_{\sigma|0}(x_{\sigma}|X_{0})}{\mathbf{q}_{\sigma}(x_{\sigma})} \right]$$
$$= \mathbb{E}_{X_{0} \sim q_{0|\sigma}(\cdot|x_{\sigma})} \left[\nabla \log q_{\sigma|0}(x_{\sigma}|X_{0}) \right].$$

Thus

$$\mathbb{E}_{X_{\sigma} \sim \mathbf{q}_{\sigma}} \left[\| \mathbf{s}_{\theta}(X_{\sigma}) - \nabla \log \mathbf{q}_{\sigma}(X_{\sigma}) \|^{2} \right] \\ = \mathbb{E}_{X_{\sigma} \sim \mathbf{q}_{\sigma}} \left[\| \mathbf{s}_{\theta}(X_{\sigma}) - \mathbb{E}_{X_{0} \sim q_{0|\sigma}(\cdot|X_{\sigma})} \left[\nabla \log q_{\sigma|0}(X_{\sigma}|X_{0}) \right] \|^{2} \right].$$

By defining $q_{\sigma,0}(dx_{\sigma}, dx_0) = q_{\sigma|0}(x_0|dx_{\sigma})q_d(dx_0) = q_{0|\sigma}(dx_0|x_{\sigma})q_{\sigma}(dx_{\sigma})$, we have

$$\begin{split} & \mathbb{E}_{X_{\sigma} \sim \mathbf{q}_{\sigma}} \left[\| \mathbf{s}_{\theta,\sigma}(X_{\sigma}) - \nabla \log \mathbf{q}_{\sigma}(X_{\sigma}) \|^{2} \right] \\ &= \mathbb{E}_{X_{\sigma} \sim \mathbf{q}_{\sigma}} \left[\| \mathbf{s}_{\theta}(X_{\sigma}) \|^{2} - 2 \mathbf{s}_{\theta}(X_{\sigma})^{T} \mathbb{E}_{X_{0} \sim q_{0|\sigma}(\cdot|X_{\sigma})} \left[\nabla \log q_{\sigma|0}(X_{\sigma}|X_{0}) \right] \right] + \\ &= \mathbb{E}_{X_{\sigma} \sim \mathbf{q}_{\sigma}} \left[\mathbb{E}_{X_{0} \sim q_{0|\sigma}(\cdot|X_{\sigma})} \left[\| \mathbf{s}_{\theta}(X_{\sigma}) - \nabla \log q_{\sigma|0}(X_{\sigma}|X_{0}) \|^{2} \right] \right] + \tilde{C} \\ &= \mathbb{E}_{(X_{\sigma},X_{0}) \sim \mathbf{q}_{\sigma,0}} \left[\| \mathbf{s}_{\theta}(X_{\sigma}) - \nabla \log q_{\sigma|0}(X_{\sigma}|X_{0}) \|^{2} \right] + \tilde{C} \,, \end{split}$$

where C and \tilde{C} are constants that do not depend on θ .

- No need of calculating derivatives of the score network.
- Mixes better and exploit regions of low data density.
- Approaches $\nabla \log q_d$ only in the limit $\sigma \to 0$.

Code Break! https: //github.com/gabrielvc/tutorial_ddim

Y. Song and Ermon, 2019⁸ introduces several noised versions of q_d .

Diffused marginals

For $t \in \llbracket 1, T \rrbracket$ and $v_t > 0$, define $q_{t|0}(x_t|x_0) = \mathcal{N}(x_t; x_0, v_t^2 \mathbf{I})$ and $\mathbf{q}_t(\mathrm{d}x_t) := \int q_{t|0}(\mathrm{d}x_t|x_0)\mathbf{q}_{\mathrm{d}}(\mathrm{d}x_0)$.

⁸Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, *32*.

Train a neural network s_{θ} to jointly learn the score of $\{q_t\}_{t=1}^T$:

Diffusion score matching

$$\sum_{t=1}^{T} \gamma_t^2 \mathbb{E}_{X_t \sim q_{t|0}(\cdot|X_0), X_0 \sim \mathbf{q}_d} \left[\|\mathbf{s}_{\theta}(X_t, v_t) - \nabla \log q_{t|0}(X_t|X_0)\|^2 \right].$$

where $\{v_t\}_{t=1}^T$ is an increasing sequence of positive values.

Generate samples by sequential ULA on $\{q_t\}_{t=1}^T$:

 $\begin{array}{c|c} \mathbf{Data} : X_T^0, k, r, \theta \\ \mathbf{Result} : X_0^0 \\ \mathbf{1} \ \mbox{for} \ t \leftarrow T \ \mbox{to} \ \mathbf{1} \ \mbox{for} \ t \leftarrow T \ \mbox{to} \ \mathbf{1} \ \mbox{dot} \\ \mathbf{2} & \mbox{for} \ \ell \leftarrow 1 \ \mbox{to} \ \mbox{dot} \\ \mathbf{3} & \mbox{set} \ \gamma = r v_t^2 / v_T^2 \\ \mbox{draw} \ \ \ \epsilon_{t,\ell} \sim \mathcal{N}(0, \mathbf{I}_d) \\ \mbox{set} \ \ X_t^\ell = X_t^{\ell-1} + (\gamma/2) \mathbf{s}_{\theta}(X_t^{\ell-1}, v_t) + \gamma^{1/2} \epsilon_{t,\ell} \\ \mathbf{4} & \mbox{set} \ \ X_{t-1}^0 = X_t^\ell. \end{array}$

Code Break! https: //github.com/gabrielvc/tutorial_ddim

Denoising diffusion implicit models (DDIM)

Score based generative models

Other then sequential ULA, several samplers are available to sample backwards from the sequence of distributions $\{q_t\}_{t=1}^T$, based on

Stochastic differential equations⁹,

Ordinary differential equations¹⁰,

Markov chains¹¹.

⁹Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*. https://openreview.net/forum?id=PxTIG12RRHS

¹⁰Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidating the design space of diffusion-based generative models. *Proc. NeurIPS*.

¹¹Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840–6851; Song, J., Meng, C., & Ermon, S. (2021). Denoising diffusion implicit models. International Conference on Learning Representations. https://openreview.net/forum?id=St1giarCHLP

Define $X_0 \sim q_d$, $X_t = X_{t-1} + (v_t^2 - v_{t-1}^2)^{1/2} \varepsilon_t$ for $t \in [\![1, T]\!]$ with $\varepsilon_t \sim \mathcal{N}(0, \mathbf{I})$.

¹²Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, *33*, 6840–6851.

Define $X_0 \sim q_d$, $X_t = X_{t-1} + (v_t^2 - v_{t-1}^2)^{1/2} \varepsilon_t$ for $t \in [\![1, T]\!]$ with $\varepsilon_t \sim \mathcal{N}(0, \mathbf{I})$.

Then, $\operatorname{Law}(X_t) = q_t$ and $\operatorname{Law}(X_t|X_0 = x_0) = q_{t|0}(\cdot|x_0)$.

¹²Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, *33*, 6840–6851.

Define $X_0 \sim q_d$, $X_t = X_{t-1} + (v_t^2 - v_{t-1}^2)^{1/2} \varepsilon_t$ for $t \in [\![1, T]\!]$ with $\varepsilon_t \sim \mathcal{N}(0, \mathbf{I})$.

Then, $\operatorname{Law}(X_t) = \mathsf{q}_t$ and $\operatorname{Law}(X_t | X_0 = x_0) = q_{t|0}(\cdot | x_0)$.

Furthermore, we can write the law of X_{t-1} conditionally on X_t, X_0 ,

¹²Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, *33*, 6840–6851.

Define $X_0 \sim q_d$, $X_t = X_{t-1} + (v_t^2 - v_{t-1}^2)^{1/2} \varepsilon_t$ for $t \in [\![1, T]\!]$ with $\varepsilon_t \sim \mathcal{N}(0, \mathbf{I})$.

Then, $\operatorname{Law}(X_t) = \mathsf{q}_t$ and $\operatorname{Law}(X_t|X_0 = x_0) = q_{t|0}(\cdot|x_0)$.

Furthermore, we can write the law of X_{t-1} conditionally on X_t, X_0 ,

$$q_{t-1|t,0}(x_{t-1}|x_t, x_0) = \mathcal{N}\left(x_0 + \frac{v_{t-1}^2}{v_t^2}(x_t - x_0), (v_t^2 - v_{t-1}^2)\frac{v_{t-1}^2}{v_t^2}\right)$$

¹²Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, *33*, 6840–6851.

DDIM¹³

Inference distribution

For $t \in [\![2, T]\!]$ and $\eta \in (0, v_{t-1})$, set $q_{t-1|t,0}^{\eta}(x_{t-1}|x_t, x_0) := \mathcal{N}(x_{t-1}; \mu_{t-1}(x_0, x_t), \eta^2 \mathbf{I}_d)$ $\mu_{t-1}(x_0, x_t) := x_0 + (v_{t-1}^2/v_t^2 - \eta^2/v_t^2)^{1/2}(x_t - x_0).$

The mean μ_{t-1} is chosen to satisfy:

$$q_{t-1|0}(\mathrm{d}x_{t-1}|x_0) = \int q_{t-1|t,0}^{\eta}(\mathrm{d}x_{t-1}|x_t,x_0)q_{t|0}(\mathrm{d}x_t|x_0).$$

¹³Song, J., Meng, C., & Ermon, S. (2021). Denoising diffusion implicit models. *International Conference on Learning Representations*. https://openreview.net/forum?id=St1giarCHLP

DDIM

Full inference process

For $\eta = {\eta_t \in (0, v_t)}_{t=1}^T$, define

$$q_{1:T|0}^{\eta}(\mathrm{d}x_{1:T}|x_0) = q_{T|0}(\mathrm{d}x_T|x_0) \prod_{t=2}^T q_{t-1|t,0}^{\eta_{t-1}}(\mathrm{d}x_{t-1}|x_t,x_0),$$

and
$$q_{0:T}^{\eta}(x_{0:T}) = q_{1:T|0}^{\eta}(\mathrm{d}x_{1:T}|x_0)\mathsf{q}_{\mathrm{d}}(\mathrm{d}x_0)$$

DDIM

Full inference process

For
$$\eta = {\eta_t \in (0, v_t)}_{t=1}^T$$
, define

$$q_{1:T|0}^{\eta}(\mathrm{d}x_{1:T}|x_0) = q_{T|0}(\mathrm{d}x_T|x_0) \prod_{t=2}^T q_{t-1|t,0}^{\eta_{t-1}}(\mathrm{d}x_{t-1}|x_t,x_0),$$

and
$$q_{0:T}^{\eta}(x_{0:T}) = q_{1:T|0}^{\eta}(\mathrm{d}x_{1:T}|x_0)\mathsf{q}_{\mathrm{d}}(\mathrm{d}x_0)$$

The inference process admits the "right" marginals:

$$q_t(dx_t) = \int q_{0:T}^{\eta}(dx_{0:T}) \,. \tag{4}$$

DDIM backward chain

DDIM Recursion

$$q_{t-1}(\mathrm{d}x_{t-1}) = \int q_{t-1|t,0}^{\eta}(\mathrm{d}x_{t-1}|x_t, x_0) \mathsf{q}_t(\mathrm{d}x_t) q_{0|t}(\mathrm{d}x_0|x_t) \,.$$

where $q_{0|t}(\mathrm{d}x_0|x_t) = q_{t|0}(x_t|x_0)\mathsf{q}_{\mathrm{d}}(\mathrm{d}x_0)/\mathsf{q}_t(x_t).$

DDIM backward chain

DDIM Recursion

$$\mathbf{q}_{t-1}(\mathrm{d}x_{t-1}) = \int q_{t-1|t,0}^{\eta}(\mathrm{d}x_{t-1}|x_t, x_0) \mathbf{q}_t(\mathrm{d}x_t) q_{0|t}(\mathrm{d}x_0|x_t) \,.$$

where
$$q_{0|t}(\mathrm{d}x_0|x_t) = q_{t|0}(x_t|x_0)\mathsf{q}_{\mathrm{d}}(\mathrm{d}x_0)/\mathsf{q}_t(x_t)$$
.

DDIM Approximation

$$\begin{aligned} \widehat{\mathsf{q}}_{t-1}(\mathrm{d}x_{t-1}) &= \int q_{t-1|t,0}^{\eta}(\mathrm{d}x_{t-1}|x_t, \boldsymbol{\mu_t}(x_t))\mathsf{q}_t(\mathrm{d}x_t) \,, \\ \end{aligned}$$
where $\mu_t(x_t) := \mathbb{E}_{X_0 \sim q_{0|t}(\cdot|x_t)} \left[X_0\right]$.

DDIM Mean approximation

Note that

$$\begin{aligned} \upsilon_t^2 \mathbf{s}_{\theta}(x_t, \upsilon_t) &\approx \upsilon_t^2 \mathbb{E}_{x_0 \sim q_{0|t}(\cdot|x_t)} \left[\nabla \log q_{t|0}(x_t|X_0) \right] \\ &= \mathbb{E}_{X_0 \sim q_{0|t}(\cdot|x_t)} \left[X_0 - x_t \right] = \mu_t(x_t) - x_t \,. \end{aligned}$$

DDIM Mean approximation

Note that

$$\begin{aligned} \upsilon_t^2 \mathbf{s}_{\theta}(x_t, \upsilon_t) &\approx \upsilon_t^2 \mathbb{E}_{x_0 \sim q_{0|t}}(\cdot|x_t) \left[\nabla \log q_{t|0}(x_t|X_0) \right] \\ &= \mathbb{E}_{X_0 \sim q_{0|t}}(\cdot|x_t) \left[X_0 - x_t \right] = \mu_t(x_t) - x_t \,. \end{aligned}$$

DDIM Backward Markov chain

Let $\mu_{t,\theta}(x_t) = x_t + v_t^2 \mathbf{s}_{\theta}(x_t, v_t), \lambda_T = \mathcal{N}(0, v_T^2 \mathbf{I})$ and $\eta = \{\eta_t \in (0, v_t)\}_{t=0}^T$. Define

$$\mathbf{p}_{1:T}^{\theta}(\mathrm{d}x_{1:T}) := \lambda_T(\mathrm{d}x_T) \prod_{t=1}^T p_{t-1|t}^{\theta}(\mathrm{d}x_{t-1}|x_t) \,.$$

where $p_{t-1|t}^{\theta}(\mathrm{d}x_{t-1}|x_t) = q_{t-1|t,0}^{\eta_{t-1}}(\mathrm{d}x_{t-1}|x_t, \mu_{\theta,t}(x_t))$ for t > 1 and $p_{0|1}^{\theta}(x_0|x_1) = \mathcal{N}(x_0; \mu_{1,\theta}(x_1), \eta_0^2 \mathbf{I}).$

DDIM as variational inference

Kullback-Leibner

$$\begin{aligned} \mathsf{KL}(q_{0:T}^{\eta} \parallel \mathsf{p}_{0:T}) \\ &= \frac{1}{2} \sum_{t=0}^{T-1} \gamma_t^2 \mathbb{E}_{X_t \sim q_{t|0}(\cdot|X_0), X_0 \sim \mathsf{q}_{\mathrm{d}}} \left[\|\mu_{\theta, t}(X_t) - X_0\|^2 \right] \\ &+ \frac{1}{2} v_T^{-2} \mathbb{E}_{\mathsf{q}_{\mathrm{d}}} \left[\|X_0\|^2 \right] + C \,, \end{aligned}$$

where $\gamma_t := \left[\upsilon_t - (\upsilon_{t-1}^2 - \eta_{t-1}^2)^{1/2} \right] (\eta_{t-1} \upsilon_t)^{-1}$ for $t > 0, \gamma_0 = \eta_0$ and C is a constant that does not depend on θ .

KL calculation

 $\mathsf{KL}(q_{0:T}^\eta \parallel \mathsf{p}_{0:T}^\theta)$

$$\begin{split} &= \int \log \left(\frac{\mathsf{q}_{\mathrm{d}}(x_{0})q_{T|0}(x_{T}|x_{0})\prod_{t=2}^{T}q_{t-1|t,0}^{\eta}(x_{t-1}|x_{t},x_{0})}{\lambda_{T}(x_{T})\prod_{t=1}^{T}p_{t-1|t}^{\theta}(x_{t-1}|x_{t})} \right) q_{0:T}^{\eta}(\mathrm{d}x_{0:T}) \\ &= \sum_{t=2}^{T} \int \mathsf{KL}(q_{t-1|t,0}^{\eta}(\cdot|x_{t},x_{0}) \parallel p_{t-1|t}^{\theta}(\cdot|x_{t}))\mathsf{q}_{t,0}(\mathrm{d}x_{t},\mathrm{d}x_{0}) \\ &+ \int \mathsf{KL}(\mathsf{q}_{\mathrm{d}} \parallel p_{0|1}^{\theta}(\cdot|x_{1}))\mathsf{q}_{1}(\mathrm{d}x_{1}) + \int \mathsf{KL}(q_{T|0}(\cdot|x_{0}) \parallel \lambda_{T})\mathsf{q}_{\mathrm{d}}(\mathrm{d}x_{0}) \,. \end{split}$$

Intermediate KL

$$\begin{aligned} \mathsf{KL}(q_{t-1|t,0}^{\eta}(\cdot|x_{t},x_{0}) \parallel p_{t-1|t}^{\theta}(\cdot|x_{t})) \\ &= (2\eta_{t-1}^{2})^{-1} \lVert \mu_{t-1}(x_{0},x_{t}) - \mu_{t-1}(\mu_{t,\theta}(x_{t}),x_{t}) \rVert^{2} \\ &= (2\eta_{t-1}^{2})^{-1} \left[1 + (v_{t-1}^{2}/v_{t}^{2} - \eta_{t-1}^{2}/v_{t}^{2})^{1/2} \right]^{2} \lVert x_{0} - \mu_{t,\theta}(x_{t}) \rVert^{2} \\ &= (2\eta_{t-1}^{2}v_{t}^{2})^{-1} \left[v_{t} + (v_{t-1}^{2} - \eta_{t-1}^{2})^{1/2} \right]^{2} \lVert x_{0} - \mu_{t,\theta}(x_{t}) \rVert^{2} \\ &= (1/2)\gamma_{t}^{2} \lVert x_{0} - \mu_{t,\theta}(x_{t}) \rVert^{2}. \end{aligned}$$

Other terms

$$\begin{aligned} \mathsf{KL}(q_{T|0}(\cdot|x_0) \parallel \lambda_T) &= (2v_T^2)^{-1} \|x_0\|^2 \\ \mathsf{KL}(\mathsf{q}_d \parallel p_{0|1}^{\theta}(\cdot|x_1)) &= -\int \log p_{0|1}^{\theta}(x_0|x_1) \mathsf{q}_d(\mathrm{d}x_0) - \mathcal{H}(\mathsf{q}_d) \\ &= (2\eta_0^2)^{-1} \|x_0 - \mu_{1,\theta}(x_1)\|^2 + (d/2) \log(2\pi\eta_0) \\ &- \mathcal{H}(\mathsf{q}_d) \,. \end{aligned}$$

Code Break! https: //github.com/gabrielvc/tutorial_ddim Deep image prior

Let \tilde{x} be a corrupted version of an image (inpairing, denoising) and $m \in \{0, 1\}^d$ the associated mask. Ulyanov et al., 2018¹⁴ proposes solving the reconstruction task by

$$\operatorname{argmin}_{\theta} \|\mu_{\theta}(z) \odot \mathsf{m} - \tilde{x} \odot \mathsf{m}\|^2 \,,$$

where z is a fixed seed.

¹⁴Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Deep image prior

Figure: Inpainting example from Ulyanov et al., 2018¹⁵

¹⁵Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Denoising tasks

Suppose $\mu_{t,\theta}(x_t)$ is a UNet. Consider the following losses:

 $L_{t|s}(\theta) := \|\mu_{t,\theta}(x_t) - x_s\|^2$ and $L_{t|0}(\theta) := \|\mu_{t,\theta}(x_t) - x_0\|^2$.

We train $\mu_{t,\theta}(x_t)$ to minimize $L_{t|s}(\theta)$.

Conclusion

Interesting papers

Going further on Diffusion models: Karras et al., 2022¹⁶,
 Y. Song, Sohl-Dickstein, et al., 2021¹⁷, Y. Song, Durkan, et al., 2021.¹⁸.

¹⁷Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*. https://openreview.net/forum?id=PxTIG12RRHS

¹⁸Song, Y., Durkan, C., Murray, I., & Ermon, S. (2021). Maximum likelihood training of score-based diffusion models. *Advances in Neural Information Processing Systems*, *34*, 1415–1428.

¹⁶Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidating the design space of diffusion-based generative models. *Proc. NeurIPS*.

Diffusion models as priors for inverse problems: Chung et al., 2023¹⁹, Cardoso et al., 2023²⁰, Wu et al., 2023²¹.

¹⁹Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., & Ye, J. C. (2023). Diffusion posterior sampling for general noisy inverse problems. *The Eleventh International Conference on Learning Representations*.

https://openreview.net/forum?id=OnD9zGAGT0k

²⁰Cardoso, G., Idrissi, Y. J. E., Corff, S. L., & Moulines, E. (2023). Monte carlo guided diffusion for bayesian linear inverse problems.

²¹Wu, L., Trippe, B. L., Naesseth, C. A., Blei, D. M., & Cunningham, J. P. (2023). Practical and asymptotically exact conditional sampling in diffusion models.

Interesting papers

 Developpements on diffusion models: Rombach et al., 2022²², Y. Song et al., 2023²³.

²²Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022).
 High-resolution image synthesis with latent diffusion models. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 10684–10695.
 ²³Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models.

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page wi go away, because $\[Mathbb{LT}_EX\]$ now knows how many pages to expect for t document.